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To calculate the magnitude of the correction of measured neutron structure factors for thermal diffuse 
scattering, it is necessary to know the ratio of the sound velocity in the crystal, cs, to the neutron velocity, 
v,. For fl(= c,/v,)< 1, the correction is independent of vn and is evaluated using exactly the same pro- 
cedure as for X-ray structure factors. For fl > 1, the correction depends on v, and requires a more com- 
plicated analysis than for X-rays, although under certain conditions (discussed in the text) there is no 
correction at all to the measured intensities. Accurate neutron structure factor measurements are con- 
veniently made with neutrons which are faster than the maximum sound velocity in the crystal; for a 
'soft' material such as lead this condition implies that the neutron wavelength does not exceed 1.70 A, 
whereas for tungsten, a 'hard' material, the upper limit is 0.77/~. 

1. Introduction 

The correction of measured X-ray intensities for ther- 
mal diffuse scattering (TDS) has been discussed in a 
number of recent papers [see Cochran (1969) for a re- 
view of existing calculations]. We consider here the 
theory for making the corresponding correction in 
neutron diffraction. Much of this theory can be taken 
over directly from the X-ray treatment, and so we shall 
deal only with the part where the two treatments 
diverge. The ratio cs/vn, where cs is the velocity of 
sound in the sample and Vn is the velocity of the scat- 
tered neutrons, plays a critical role in the neutron 
theory. 

The influence of TDS on measured neutron inten- 
sities has already been considered briefly by Willis 
(1969), Rouse & Cooper (1969) and Cooper (1970). 
We shall follow the arguments given in these papers, 
extending them where necessary. 

Our analysis emphasizes the geometrical character- 
istics of the scattering of neutrons in reciprocal space. 
[Readers interested in a detailed analytical treatment 
of the scattering close to the Bragg angle are referred 
to the papers of Waller & Froman (1952) and Sjolan- 
der (1955).] One-phonon scattering only will be con- 
sidered; two-phonon and higher-order processes will 
be ignored. We shall assume, as in the X-ray theory 
of Nilsson (1957) and others, that the acoustic modes 
of vibration alone cause a peaking of the TDS at 
reciprocal lattice points and that these modes all pos- 
sess the same velocity, independent of the directions 
of propagation and polarization. Thus 

co(q) = csq (1) 

where w(q) is the circular frequency of the modes with 
wave-vector q and the proportionality constant, cs, is 
the same for all modes. 

In the next section, we describe the topology of the 
'scattering surfaces' for the one-phonon scattering of 
thermal neutrons close to the Bragg angle. These sur- 

faces are defined as the locus of points in reciprocal 
space which give rise to one-phonon scattering for a 
fixed wavelength of the incident beam and a fixed 
orientation of the crystal. The surfaces are very differ- 
ent from the corresponding surface, the Ewald sphere, 
appropriate to the one-phonon scattering of X-rays. 
The TDS contribution to the neutron intensity meas- 
ured at a fixed orientation of the crystal can then be 
calculated (§ 3) by summing the scattering cross-sec- 
tions from all the modes lying on the scattering sur- 
faces. The rest of the evaluation of the TDS correction 
for the particular scan adopted in measuring the Bragg 
peak is the same as for X-rays. In § 4, we discuss the 
implications of the present analysis in choosing a suit- 
able neutron wavelength for accurate structure-factor 
measurements by neutron diffraction. 

2. One-phonon scattering surfaces 

The coherent one-phonon scattering of neutrons is 
governed by the conservation laws for momentum 
transfer 

Q - k - ko = B + q (2a) 

and for energy transfer 

hZ(k z -  k2o)/2mn = - ehco(q) , (2b) 

where k, k0 are the wave-vectors of the scattered, in- 
cident neutrons respectively, B is the reciprocal lattice 
vector, and mn is the neutron mass. The same conven- 
tion, regarding the magnitude of the vectors in equa- 
tion (2a), is adopted as that used by Cochran (1963), 
i.e. k0 = 2n/2 and B = 4n sin OB/2, where 2 is the neutron 
wavelength and 0B is the Bragg angle, e in equation 
(2b) is either + 1 or - 1 : e = + 1 corresponds to phonon 
creation and a loss in energy of the neutrons after 
scattering, and e = -  1 corresponds to phonon anni- 
hilation and a gain in neutron energy. The reciprocal 
space vectors in equation (2a) are illustrated in Fig. 1. 
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Equations (2a) and (2b) determine the topology of 
the scattering surfaces. In the X-ray case, the phonon 
energy hco(q) is negligible compared with the energy of 
the X-ray photon; (2b) then reduces to k=ko and the 
scattering surface is the Ewald sphere. For neutron 
scattering, however, hog(q) is comparable with the 

Ewald 

C 
ko- ! 

Fig. I. Vectors in reciprocal space for the one-phonon scat- 
tering of neutrons with the creation of a phonon with wave- 
vector q. P is the reciprocal lattice point and A is the end- 
point of the wave-vector k of the scattered neutron. The vec- 
tor AB is (ehog/2E)k where E is the neutron energy 
(=h2kZ/2mn) and m is the frequency of the mode q. For 
acoustic phonons, P and A are very close to B; for this 
reason, the sphere is replaced by its tangent plane at B in 
later figures. 

Scattering 

/ A . ~  ~ Scattering surface 

/ Scattering surface 
for E: =, I 

To centre of 
Ewald sphere 

Fig.2. One-phonon scattering surfaces for fl<l. The hyper- 
boloid possesses rotational symmetry about the axis CP 
joining the centre C of the Ewald sphere and the reciprocal 
lattice point P. 

energy of a thermal neutron; thus k ¢ k o  and, even 
though k is not very different from k0 for scattering by 
acoustic phonons, the topology of the scattering sur- 
faces is more complicated than for X-rays. 

To evaluate the TDS correction for neutrons, we 
need to discuss the scattering surfaces for one-phonon 
scattering at crystal settings close to the Bragg angle. 
The correction is associated with one-phonon processes 
involving acoustic modes with wave numbers q which 
are much smaller than the radius k0 of the Ewald 
sphere. Using equation (1), equation (2b) reduces for 
these modes to the approximate form 

k-ko= - ¢ q  (3) 
where fl = cs/vn and vn = hk/m,.  Furthermore, because 
q~ko, we can replace the sphere in the neighbourhood 
of the reciprocal lattice point by its tangent plane nor- 
mal to the scattering direction k. Equation (3) then 
shows that the locus in reciprocal space of the end 
point of q is a conic with eccentricity 1/,6 (Seeger & 
Teller, 1942). 

For fl < 1, (3) represents a rotational hyperboloid of 
two sheets with the reciprocal lattice point P at one 
focus, Fig. 2. There is rotational symmetry about a 
line through P and normal to the Ewald sphere. The 
two sheets lie on opposite sides of the Ewald surface 
(defined by k=k0), so that scattering from q vectors 
lying on one sheet corresponds to phonon creation 
(e = + 1, k < k0) and scattering from the other sheet to 
phonon annihilation ( e = -  1, k>k0). Along a given 
scattering direction, both processes take place simul- 
taneously: this is illustrated by Fig. 2 where the wave- 
vector q is associated with the phonon creation process 
and q' with phonon annihilation. 

Fig. 3 shows scattering surfaces for neutrons with 
twice the velocity of sound, plotted for equal incre- 
ments of the quantity r/,. r/, is the projection of the 
vector I1 along the scattering direction k, where ll joins 
the reciprocal lattice point P and the point of inter- 
section B of the scattering direction and the Ewald 
sphere (see Fig. 1). 1/, is a measure of the angle of off- 
set ,dO from the Bragg position: 

2zc 
r/,~ = IBI cos OB. dO = T sin 20B. dO. (4) 

Thus in scanning across a reflexion by + 2 °, the maxi- 
mum value of r/t~ is about one-thirtieth of the radius 
of the Ewald sphere; the scattering surfaces change 
continuously in the way illustrated in Fig. 3 through- 
out the scanning range 2 > AO> 0 °, and for the range 
0 > AO > - 2  ° pass through the configurations obtained 
by reflecting Fig. 3 in the Ewald surface. 

For fl > 1, the scattering surface is a rotational ellip- 
soid with the reciprocal lattice point P at one focus 
(see Fig. 4). Again there is rotational symmetry about 
a line through the reciprocal lattice point and perpen- 
dicular to the Ewald sphere. The ellipsoid lies wholly 
on one side or other of the Ewald sphere, depending 
on which side P is. In contrast to the faster-than-sound 
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case, the one-phonon scattering takes place for a given 
orientation of the crystal either by phonon creation or 
by phonon annihilation, but not by both. Fig. 5 shows 
scattering surfaces for neutrons with half the velocity 
of sound and for the same range of r/, as that adopted 
in plotting Fig. 3. 

3. Evaluation of TDS correction 

At each point in the scan across the Bragg reflexion, 
the total one-phonon intensity which enters the win- 
dow of the detector must be calculated. Knowing the 
dependence of this total intensity on the off-set angle 
AO = 0-OB, the TDS correction can then be evaluated. 
The complete procedure for evaluating the correction 
for X-rays is described by Cochran (1969); there are 
only two steps in this procedure [(a) and (b) below] 
which are different for neutrons. 

(a) The formula giving the cross section for scatter- 
ing of X-rays by the mode q 

da(q) ~ (1) NQ 2 kBT 
dO ] = m ~-2((~F(Q)2 (5) 

must be replaced by the corresponding formula for 
neutron scattering: 

da(q) ] o) NQ 2 k kBT F(Q) 2 1 1 (6) 
d.Q ] = 2 m  ko IJI co2(q) 

(see Cochran, 1963; Willis, 1969). \  dO ] is the 

flux of X-rays or neutrons scattered into unit solid 
angle in a one-phonon process by the mode q, N is 
the number of unit cells in the crystal, each of mass m, 
kB is Boltzmann's constant and T the absolute tem- 
perature. For scattering near the Bragg position the 
magnitude of the scattering vector Q is 4n sin OB/2; 
F(Q) is the structure factor for Bragg scattering. J is 
a Jacobian term which arises in integrating the one- 
phonon intensities over all energy transfers. The sig- 
nificance of J was first emphasized by Waller & Fro- 
man (1952), who derived the expression 

J=  1 + eflq,/q (7) 

where q, is the projection of q along the scattering 
direction k. 

(b) In applying formula (6), the end-point of q must 
be restricted to the neutron scattering surface (§ 2), 
whereas in using formula (5) for X-rays the end-poinl 
of q lies along the Ewald sphere. 

3.1 Faster-than-sound neutrons (fl < 1) 
Putting co(q)= csq in equation (6) and summing over 

the cross-sections for phonon creation (mode q) and 
annihilation (mode q'), the one-phonon intensity in the 
scattering direction is 

da)(1) [NQ2 k 
d-~ . . . .  ~ 2m ko kBT F(Q)2 

x IJ~llj c~q -2 + 
1 1.] 

IJ-l l  c2q '2 " 

(8) 

J 

~ , ~ , ~  vl ,, 0 Ewald 

re  

to centre of Ewald sphere 

Fig.3. Faster-than-sound scattering surfaces drawn for fl=½ 
and for equal increments of I/u, the distance of the reciprocal 
lattice point P from the Ewald surface. Po, PI,P2 . . .  are 
the positions of P for r/n = 0,1,2 . . . .  

Scat ter ing 
d i rect ion 

, 
Id 

sphere 

/ /  
To centre of 
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Fig.4. One-phonon scattering surface for fl > 1, corresponding 
to processes involving phonon creation. (For phonon 
annihilation, the reciprocal lattice point P is on the opposite 
side of the Ewald sphere.) The ellipsoid possesses rotational 
symmetry about the axis joining P and the centre of the 
Ewald sphere. 
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The subscripts on the Jacobians refer to the value of e: 
from equation (7) 

I J+l[ = 1 +fl cos ~, 

and I J-11 = 1 - f l  cos 9" 

where 9', 9" are the angles illustrated in Fig. 2. Using 
the geometrical relationships in Fig. 2, the expression 
in square brackets in equation (8) reduces to 

2 
c2q2 , 

where q is the wave vector terminating on the Ewald 
sphere (see Fig. 1). Moreover, for scattering close to 
the Bragg angle, k '~ k0 so that (8) becomes 

( d a )  (1) NQ2kI~TF(Q)Z 1 
- m e]r/--- T . (9) 

Thus we have obtained the remarkable result that the 
one-phonon intensity for faster-than-sound neutrons 
is given by exactly the same formula as for X-rays, 
equation (5). The neutrons are scattered in the direc- 
tion k by the modes q and q', but the sum of the inten- 
sities from these two processes is the same as if scat- 
tering had taken place in the same direction from the 
mode q which is operative in the X-ray case. 

We conclude, therefore, that the TDS correction 
for faster-than-sound neutrons is evaluated using the 
same formulae as for X-rays (see Cochran, 1969). This 
result is at variance with that given by Rouse & 

Po 

rl.-1 

q . °3  

Ewald 
sphere 

tO centre of 
Ewald l;phere 

Fig. 5. Slower-than-sound scattering surfaces drawn for ,8=2 
and for equal increments of r/,, the distance of the reciprocal 
lattice point P from the Ewald surface. Po, P1,P2... are 
the positions of P for r/u =0,1,2 . . . .  

Cooper (1969) (who state that the neutron and X-ray 
formulae are only identical in the limit, f l -+  0) be- 
cause of an error later noted by these authors (Rouse 
& Cooper, 1970) in their analysis. 

3.2 Slower-than-sound neutrons (fl > 1) 
We have seen in § 2 that for slower-than-sound neu- 

trons the scattering surface encloses the reciprocal lat- 
tice point; the one-phonon scattering is confined, there- 
fore, to a diffuse region surrounding the reciprocal lat- 
tice point, and there is no scattering for directions k 
lying outside this region (Lowde, 1954). This situation 
contrasts with that for faster-than-sound neutrons 
where the scattering surface extends across the whole 
of the Brillouin zone. It is clear from Fig. 5 that the 
size of the diffuse region increases with r/, or with the 
off-set angle AO: if A~0 is the semi-angle subtended by 
the ellipsoid at the centre C of the Ewald sphere, then 
it is readily shown that 

A~0=(fl 2 - 1 )  1/2 sin 2 0B. A0. (10) 

What is the effect of the TDS on the measured Bragg 
intensity if the scattering from the whole of the diffuse 
region enters the detector at each position in the scan 
across the Bragg peak? To answer this we must calcu- 
late the TDS intensity arising from all the modes with 
wave-vectors q which terminate on the scattering sur- 
face. This calculation is given in the Appendix and 
leads to an equation which shows that the total inten- 
sity is independent of the deviation from the Bragg set- 
ting. As the reciprocal lattice point approaches the 
Ewald sphere, the scattering surface contracts (see 
Fig. 5) and fewer modes contribute to the scattering; 
however, the contribution from each mode, propor- 
tional to q-Z, increases, and the two effects exactly 
counterbalance one another. Consequently, there is 
no peaking of the TDS at the Bragg position: all the 
TDS is subtracted off by making a background meas- 
urement on either side of the Bragg peak, and so there 
is no TDS correction. This then leads us to enquire 
into the condition for all the one-phonon scattering 
to enter the detector. 

This condition is dependent on the type of scan 
adopted in measuring the reflexion. Fig. 6 is a diagram 
in reciprocal space showing the direction of scanning 
across the diffuse region enclosing the reciprocal lattice 
point, for different types of scan. The major axis of 
the rotational ellipsoid representing the diffuse region 
lies along the radial direction joining the reciprocal 
lattice point P to the centre C of the Ewald sphere. 
At low Bragg angles in the 0 - 2 0  scan and at the limit 
the scan the detector may 'see' no TDS at all, 
because for all k vectors entering the detector the min- 
imum deviation of k from the radial direction CP may 
exceed the semi-angle A~0 subtended by the diffuse 
region at C. As k moves from inside to outside the 
diffuse region, there will be a discontinuity in the TDS 
intensity. [This type of discontinuity has been discussed 
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further by Waller & Froman (1952) and Sjelander 
(1955).] 

For the purpose of measuring accurate structure fac- 
tors using slower-than-sound neutrons, it is preferable 
to avoid such a discontinuity. This can be done by 
adopting a radial scan, for which the detector win- 
dow is centrally aligned along CP for all values of 0, 
in scanning across the Bragg peak. The radial scan 
requires a rather complicated coupling of the angular 
movements of crystal and detector. If the crystal move- 
ment is +Aco and the detector movement is +2A0, 
then Am" 2AO= 1"2 sin z 0. (At 0 e = 0  the radial scan 
is equivalent to an co scan, and at 0e = 90 ° to a 0 - 2 0  
scan.) The condition for all the TDS intensity to enter 
the window in a radial scan is 

Ao~> A~o (11) 

where As is the semi-angle subtended by the width of 
the window at the crystal. From equation (10) this 
condition is readily met for low-angle (0B ~ 0) and for 
high-angle (0B~90 °) reflexions, but for intermediate 
reflexions equation (11) sets a lower limit to the mag- 
nitude of fl for slower-than-sound neutrons. For fl 
slightly greater than unity, the diffuse scattering occurs 
over a volume of reciprocal space which may be larger 
than that encompassed by the detector and so a finite 
TDS correction is required. For the co scan and the 
0 - 2 0  scan, the range of fl requiring a TDS correction 
is larger. Clearly, the calculation of the correction will 
be less straightforward than for faster-than-sound 
neutrons. 

We conclude that for slower-than-sound neutrons 
there is no TDS correction provided that fl is not too 
close to unity, but the 'forbidden' range of fl depends 
on the Bragg angle 0B and on the type of scan adopted 
in measuring the reflexions. This conclusion is an 
extension of th.e one given earlier (Willis, 1969) that, to 
a first approximation, there is no TDS correction for 
the scattering of slower-than-sound neutrons. 

4. Discussion 

We have treated the simplest case, originally con- 
sidered by Nilsson (1957) for X-rays, in which all 
acoustic modes of vibration have the same velocity. 
This assumption is not even valid for elastically iso- 
tropic crystals, which have two distinct velocities (lon- 
gitudinal and transverse). However, it can be shown 
(SjMander, 1955) that, for the more realistic case of two 
sound velocities, the same formula again describes 
the one-phonon intensity for both neutrons and for 
X-rays scattered near the Bragg angle, provided that 
the neutrons are faster than both sound velocities. [This 
formula is simply equation (9) with c~ replaced by 
½(c~+2c~), where c t and c t are the longitudinal and 
transverse sound velocities.] This means, therefore, that 
no modification is required to the conclusions arrived 
at in § 3.1 regarding the scattering of faster-than-sound 
neutrons. 

Similarly, we expect that a detailed analysis of the 
two-velocity model will not affect the conclusion, given 
in § 3.2, that there is no TDS correction for the scat- 
tering of slower-than-sound neutrons, provided that 
the whole of the TDS enters the detector during the 
measurement scan. We have discussed the implications 
of this proviso above, but we have made no attempt to 
calculate the magnitude of the correction (which will be 
less than that given by the X-ray formulae) if the pro- 
viso cannot be met. 

It is apparent from our analysis that the TDS cor- 
rection is made most easily by choosing a sufficiently 
short neutron wavelength to ensure that the neutron 
velocity exceeds the maximum sound velocity in the 
crystal: the procedure for making the correction is then 
exactly the same as for X-rays. This wavelength is 
0-92/k for barium fluoride and 1.13 A. for hexamethyl- 
enetetramine, two materials which have been examined 
recently at Harwell by neutron diffraction. The critical 
wavelength for other materials is readily calculated 
from a knowledge of their elastic constants: for tung- 
sten, which is a hard material, it is 0.77 A, and for lead, 
a soft material, it is 1-70 A_. 

A corollary of the present study is that time-of-flight 
measurements of Bragg intensities are less satisfactory 
than conventional measurements conducted at a fixed 
neutron wavelength. In the time-of-flight technique 
(Turberfield, 1970), the different reflecting planes select 
different wavelengths from the incident 'white' beam; 
thus the ratio cdvn varies appreciably from one family 
of planes to another, and the TDS correction will be 
very difficult to determine, especially for those planes 
with cs/vn slightly greater than unity. 

Discussions with. Dr M. J. Cooper and Mr K. D. 
Rouse are gratefully acknowledged. 
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Fig.6. Diagram showing dircztions of szanning in rezigro;al 
space for three types of scan: o) scan, 0-29 scan andradial 
scan. The cross-hatched area r.'pre~.'ats thz di~l'ase region 
spanned by those modes involved in the scattering of slower- 
than-sound neutrons. 
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A P P E N D I X  

Total TDS intensity for 
slower-than-sound neutrons (1~ > 1) 

Referring to Fig. 4, we need to integrate the differen- 

[ do(q) ~ (') 
tial cross-section \ dO } over all modes with wave- 

vectors q terminating on the surface of the ellipsoid. 
Considering first the modes ql and qz belonging to 

the same scattering direction k, we find using equa- 
tion (6) that 

_d_°'(q 1) _[_ d°'(_q2) _ 

d.(2 d ~  

NQ 2 kBT 
m c~ F(Q)2 " 

× 1) 2" 

Here r/,, r/± are the projections of the vector 11, joining 
the reciprocal lattice point to the Ewald sphere, along 
and perpendicular to the scattering direction. By tak- 
ing the q vectors in pairs the integration over the ellip- 
soid is reduced to an integration over a circle of radius 
R, representing the projection of the ellipsoid on the 
Ewald plane. The total one-phonon cross-section for a 
given setting of the crystal is therefore 

o'I-- 
NQ 2 kBT I R fl 

m cs z F(Q)2 0 ;)~l/i'il}~--l)(q~q~)2" 
1 

x 2qldq±.  k~ " 

Putting sin x = r/_~_ (f12_ 1)1/2, 
r/H 

r/2l~(~_i~-- D ~ : /~ i )z ]  = __ ___ _ . . _ _ . _ -  t anh-a  , 
w0 

so that finally 

o'1 . . . . . . . . . .  F(Q) 2 2k~ tanh -1 
m ¢2 • 

Thus o'x increases from nothing at very long neutron 
wavelengths ( f in  1) to a maximum at the critical wave- 
length, fl--1. It is independent of the deviation, A0, 
of the crystal from the Bragg setting. 
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The Elastic Constants of the Trielinie Crystals Ammonium and Potassium 
Tetroxalate Dihydrate 
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(Received 30 December 1969) 

In the triclinic crystals ammonium and potassium tetroxalate dihydrate 34 and 31 sound velocities 
respectively were measured by means of the diffraction of light by ultrasonic waves. From these velocities 
the 21 independent components of the elastic tensor were calculated. Thus, the method first tested by 
Haussiihl & Siegert on CuSO4.5H20 was successfully applied to two other triclinic crystals. The com- 
pounds under investigation were found to exhibit an extremely high elastic anisotropy. 

Introduction 

The elastic behaviour of triclinic crystals is described 
by a fourth-rank tensor containing 21 independent 
components. The determination of these 21 constants 
from measurements of sound velocities involves, apart  

from a larger experimental expenditure, severe nu- 
merical difficulties. Haussiihl & Siegert (1969) deter- 
mined for the first time the elastic constants of a tri- 
clinic crystal, CuSO4.5 HzO. It is the aim of the present 
investigation to apply the method used by Haussiihl 
& Siegert (1969) to other crystals in order to test 
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